Min Stack

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
stack
design
Author

Isaac Flath

Published

February 24, 2024

Problem Source: Leetcode

Problem Description

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

Implement the MinStack class:

  • MinStack() initializes the stack object.
  • void push(int val) pushes the element val onto the stack.
  • void pop() removes the element on the top of the stack.
  • int top() gets the top element of the stack.
  • int getMin() retrieves the minimum element in the stack.

You must implement a solution with O(1) time complexity for each function.

Examples

Input
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]

Output
[null,null,null,null,-3,null,0,-2]

Explanation
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top();    // return 0
minStack.getMin(); // return -2

Constraints:

  • -231 <= val <= 231 - 1
  • Methods pop, top and getMin operations will always be called on non-empty stacks.
  • At most 3 * 104 calls will be made to push, pop, top, and getMin.

Solution

Each method is O(1).

  • Time Complexity: O(1)
  • Space Complexity: O(1)
class MinStack:

    def __init__(self):
        self.stack = []
        self.min_stack = []

    def push(self, val: int) -> None:
        self.stack.append(val)
        if self.min_stack: 
            self.min_stack.append(min(self.min_stack[-1],val))
        else:
            self.min_stack.append(val)

    def pop(self) -> None:
        self.stack.pop()
        self.min_stack.pop()

    def top(self) -> int:
        return self.stack[-1]

    def getMin(self) -> int:
        return self.min_stack[-1]